
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Professor Sophie Engle
Department of Computer Science

Coordination
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● If multithreading…
○ If sharing data between threads…

■ If shared data not already thread safe…
● must synchronize access to that data

Providing Consistency

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization
● Using the synchronized keyword and intrinsic (or

monitor) lock objects to protect blocks of code

● Using the volatile keyword to protect* variables

● Using wait() and notifyAll() to coordinate threads

● Using conditional synchronization via lock objects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization
● Using the synchronized keyword and intrinsic (or

monitor) lock objects to protect blocks of code

● Using the volatile keyword to protect* variables

● Using wait() and notifyAll() to coordinate threads

● Using conditional synchronization via lock objects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● Synchronization helps coordinate threads with shared
resources and provide thread safety

● Sometimes need coordination for other reasons
○ Scanner needs to wait for console input…
○ Server needs to wait for incoming requests…
○ Main thread needs to wait for work to complete...

Motivation

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Example: Thread.join()

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start(); // assume long-running
4. worker.join();
5. }

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.html#join()

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.html#join()

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

M

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

W M

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

WM

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

W

M

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

W

M

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

WM

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

1. public static void main(...) {
2. Thread worker = new Thread();
3. worker.start();
4. worker.join();
5. }

Runnable TerminatedNew

Timed Waiting BlockedWaiting

WM

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Example: Thread.join()
● The calling thread main calls wait() to transition from

RUNNABLE to the WAITING state

● The target thread worker calls notifyAll() when it
transitions to TERMINATED state

● The calling thread main wakes up and transitions from
WAITING back into its RUNNABLE state

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Using Wait and Notify
● Must be called within a synchronized block of code

on the intrinsic lock object
○ synchronized (lock) { lock.wait(); }
○ synchronized (this) { this.notify(); }

● The intrinsic lock object determines which wait() calls
are woken up by notify() and notifyAll() calls

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Using Intrinsic Locks
synchronized (hello) { hello.wait(); }
synchronized (hello) { hello.notify(); }
synchronized (hello) { hello.notifyAll(); }

synchronized (world) { world.wait(); }
synchronized (world) { world.notify(); }
synchronized (world) { world.notifyAll(); }

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● Current thread transitions from RUNNABLE to WAITING
or TIMED WAITING state

● Releases intrinsic lock while waiting

● Waits until notified, timed out, interrupted, or… ?????
○ A spurious wakeup can occur (rarely)
○ Must wait in a while loop instead of if as a result!

Using wait(), wait(long), ...

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Object.html#wait()

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Object.html#wait()

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Using notify(), notifyAll()
● Wakes up one or all threads waiting on lock

○ Rarely use notify() since unable to choose thread

● Awoken thread(s) attempt to acquire lock and transition
back into RUNNABLE state
○ If unable to acquire lock, will be BLOCKED** until able

to acquire lock object

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Object.html#notify()

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Object.html#notify()

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Using Thread.sleep()

● Pauses execution temporarily

● Does not release locks (i.e. blocking)

● Often used to test code if attempting to cause blocking

● Most cases should use wait(...) with a time instead

https://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/essential/concurrency/sleep.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Use Cases
● Bounded Buffer

○ Data structure for producer/consumer problems

● Work Queue
○ Manages worker threads and work

● Conditional Synchronization
○ Only block when certain conditions hold

https://www.cs.usfca.edu/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

