
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Professor Sophie Engle
Department of Computer Science

Consistency
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

read value of x read value of x

calculate x + 1 calculate x - 1

assign x to calculated result assign x to calculated result

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 calculate 1 + 1 = 2

3 assign x = 2

4 read x = 2

5 calculate 2 – 1 = 1

6 assign x = 1

7

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 calculate 1 + 1 = 2

3 assign x = 2

4 read x = 2

5 calculate 2 – 1 = 1

6 assign x = 1

7 final value x = 1

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 calculate 1 – 1 = 0

3 assign x = 0

4 read x = 0

5 calculate 0 + 1 = 1

6 assign x = 1

7

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 calculate 1 – 1 = 0

3 assign x = 0

4 read x = 0

5 calculate 0 + 1 = 1

6 assign x = 1

7 final value x = 1

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 read x = 1

3 calculate 1 + 1 = 2

4 calculate 1 – 1 = 0

5 assign x = 2

6 assign x = 0

7

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 read x = 1

3 calculate 1 + 1 = 2

4 calculate 1 – 1 = 0

5 assign x = 2

6 assign x = 0

7 final value x = 0

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
Thread 1: x++; Thread 2: x--;

1 read x = 1

2 read x = 1

3 calculate 1 + 1 = 2

4 calculate 1 – 1 = 0

5 assign x = 0

6 assign x = 2

7 final value x = 2

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Problems
● Concurrent operations causes inconsistent results

● Data shared by threads not thread safe access
○ Value may be modified in between read and use
○ Further complicated by caching of values in memory

● Operators x++ and x-- are not atomic operations
○ Operations can be divided or interrupted

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Thread Safety
● An object is thread safe if it maintains a valid or

consistent state even when accessed concurrently

● Includes all constants and immutable objects
○ String or primitive types that are final

● Includes some mutable objects
○ StringBuffer, java.util.concurrent.*

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

● If multithreading…
○ If sharing data between threads…

■ If shared data not already thread safe…
● must synchronize access to that data

Providing Consistency

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization
● Using the synchronized keyword and intrinsic (or

monitor) lock objects to protect blocks of code

● Using the volatile keyword to protect* variables

● Using wait() and notifyAll() to coordinate threads

● Using conditional synchronization via lock objects

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Synchronization Issues
● Too little synchronization causes inconsistent results

○ Code no longer functional

● Too much synchronization causes blocking
○ Instead of faster code, results in slower code

(threads can't run concurrently, more complex code)
○ Can actually cause deadlock*

https://www.cs.usfca.edu/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

